Vocabulary Development in English and Chinese: A Comparative Study with Self-Organizing Neural Networks

نویسندگان

  • Xiaowei Zhao
  • Ping Li
چکیده

In this paper we present a self-organizing neural network model to simulate the early vocabulary development in English and Chinese. We focus on how the different lexical composition patterns in the two languages can emerge, develop and change when the learner acquires an increasing number of words. Our results suggest that certain lexical characteristics in the linguistic input (e.g., word frequency and length) play significant roles in the presence or absence of given patterns. Our study presents a dynamic developmental picture for early lexical acquisition, which is dependent on the joint contributions of mechanisms of learning and characteristics of the learning environment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Steel Consumption Forecasting Using Nonlinear Pattern Recognition Model Based on Self-Organizing Maps

Steel consumption is a critical factor affecting pricing decisions and a key element to achieve sustainable industrial development. Forecasting future trends of steel consumption based on analysis of nonlinear patterns using artificial intelligence (AI) techniques is the main purpose of this paper. Because there are several features affecting target variable which make the analysis of relations...

متن کامل

Monthly runoff forecasting by means of artificial neural networks (ANNs)

Over the last decade or so, artificial neural networks (ANNs) have become one of the most promising tools formodelling hydrological processes such as rainfall runoff processes. However, the employment of a single model doesnot seem to be an appropriate approach for modelling such a complex, nonlinear, and discontinuous process thatvaries in space and time. For this reason, this study aims at de...

متن کامل

Gait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map

The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...

متن کامل

Gait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map

The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...

متن کامل

Gait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map

The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008